Synthetic Aperture Radar Image Clustering with Curvelet Subband Gauss Distribution Parameters
نویسندگان
چکیده
Curvelet transform is a multidirectional multiscale transform that enables sparse representations for signals. Curvelet-based feature extraction for Synthetic Aperture Radar (SAR) naturally enables utilizing spatial locality; the use of curvelet-based feature extraction is a novel method for SAR clustering. The implemented method is based on curvelet subband Gaussian distribution parameter estimation and cascading these estimated values. The implemented method is compared against original data, polarimetric decomposition features and speckle noise reduced data with use of k-means, fuzzy c-means, spatial fuzzy c-means and self-organizing maps clustering methods. Experimental results show that the curvelet subband Gaussian distribution parameter estimation method with use of self-organizing maps has the best results among other feature extraction-clustering performances, with up to 94.94% overall clustering accuracies. The results also suggest that the implemented method is robust against speckle noise.
منابع مشابه
Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution
Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...
متن کاملA Robust SAR NLFM Waveform Selection Based on the Total Quality Assessment Techniques
Design, simulation and optimal selection of cosine-linear frequency modulation waveform (CNLFM) based on correlated ambiguity function (AF) method for the purpose of Synthetic Aperture Radar (SAR) is done in this article. The selected optimum CNLFM waveform in contribution with other waveforms are applied directly into a SAR image formation algorithm (IFA) and their quality effects performance ...
متن کاملRecognition of Changes in SAR Images Based on Gauss-Log Ratio and MRFFCM
A modified version of MRFFCM (Markov Random Field Fuzzy C means) based SAR (Synthetic aperture Radar) image change detection method is proposed in this paper. It involves three steps: Difference Image (DI) generation by using Gauss-log ratio operator, speckle noise reduction by SRAD (Speckle Reducing Anisotropic Diffusion), and the detection of changed regions by using MRFFCM. The proposed meth...
متن کاملAn Approach to Compare the Performance of Different Transform Domain Filters with Firefly Algorithm in Despeckling of SAR Images
This paper provides a comparative study of the performance of different Transform Domain filters like Wavelet, Contourlet, Bandelet and Curvelet with Firefly Algorithm (FA) applied to despeckle Synthetic Aperture Radar (SAR) images. Initially the feature enhancement and edge detection of speckled SAR image are integrated with improved gain function by shrinking and stretching the Wavelet Co-eff...
متن کاملRadar Image of One Dimension Rough Surface with Buried Object
In order to detect a buried object quickly and accurately, a fast radar imaging method is presented in this paper. At first, complex backscatter data are computed by using propagation-insidelayer expansion combining the forward and backward method (PILE + FB). Then, a conventional synthetic aperture radar (SAR) imaging procedure called back projection method is used to generate 2-D image. The r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014